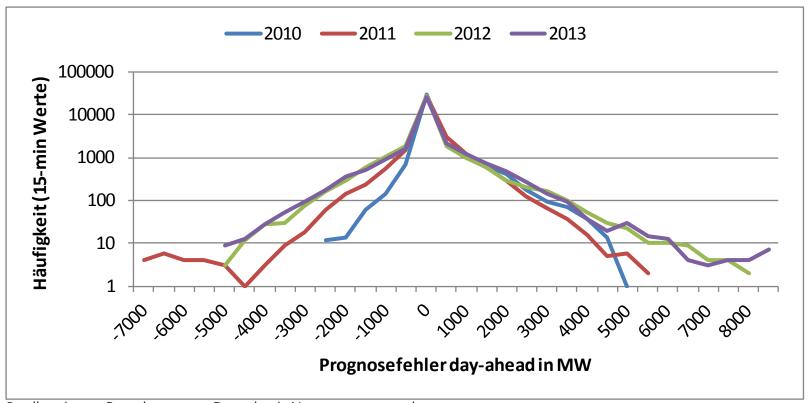
HERAUSFORDERUNGEN FÜR DAS STROMVERSORGUNGSSYSTEM BEI STEIGENDEM ANTEIL ERNEUERBARER ENERGIEN

Dr. M. Klobasa, Dr. F. Sensfuß, Fraunhofer Institut für System und Innovationsforschung ISI



Agenda

- Herausforderungen in Bezug auf Systemstabilität
 - Prognosegenauigkeiten und Rampen
 - Spitzenlastdeckung bei niedriger Einspeisung aus Wind und PV
 - Bereitstellung von Systemdienstleistungen/Gewährleistung des Netzbetriebes
- Herausforderungen bei hoher Erneuerbaren Einspeisung (Überschusssituationen)
 - Zusätzliche Kosten (z.B. durch Einspeisemanagement)
 - Gewährleistung der Regelbarkeit

Prognosefähigkeit und Rampen

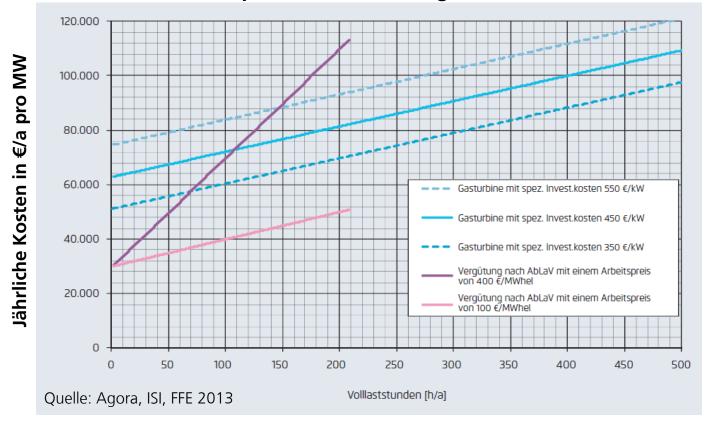
Prognoseabweichungen PV-Einspeisung Deutschland

Quelle: eigene Berechnungen, Datenbasis Netztransparenz.de

=> Zunehmende Intra-day Anpassungen und Steigerung der Prognosegenauigkeiten

Prognosefähigkeit und Rampen

Modellierung der maximalen 1-h Änderungsrampen der Residuallast für unterschiedliche Wetterdaten


	Wetter 2006							
	in GW							
2013	12,9	13,4	11,7	13,9	11,6	13,5		
	-8	-8	-8	-9	-10	-9		
2020	15,0	14,7	17,4	14,9	15,0	14,8		
	-11	-11	-13	-13	-16	-12		

Quelle: eigene Modellberechnungen, Datenbasis Netztransparenz.de

=> Anstieg der kurzfristigen Leistungsänderungen

Spitzenlastdeckung

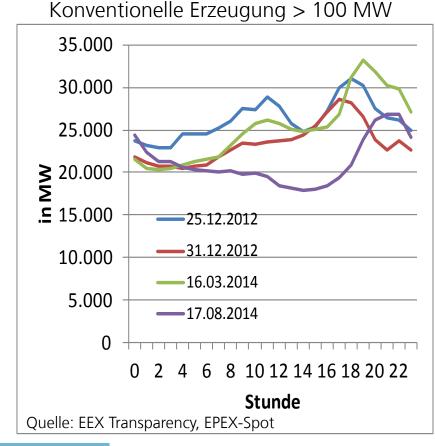
Benchmark Gasturbine zur Spitzenlastabdeckung:

=> Einbindung aller relevanter Optionen zur Spitzenlastdeckung

Bereitstellung von Systemdienstleistungen

"Must run" Anlagen:

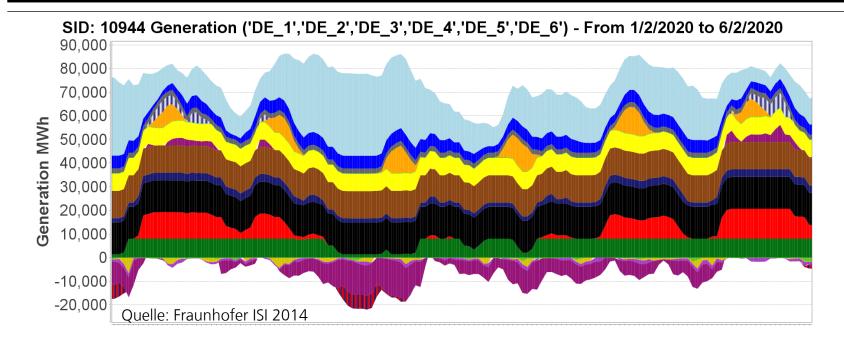
- Netztechnische Gründe
- KWK Anlagen
 - Alternative Wärmebereitstellung
- Reservemärkte


Reservemärkte:

Primärreserve: Ca. 550 MW

Sekundärreserve: Ca. 2000 MW

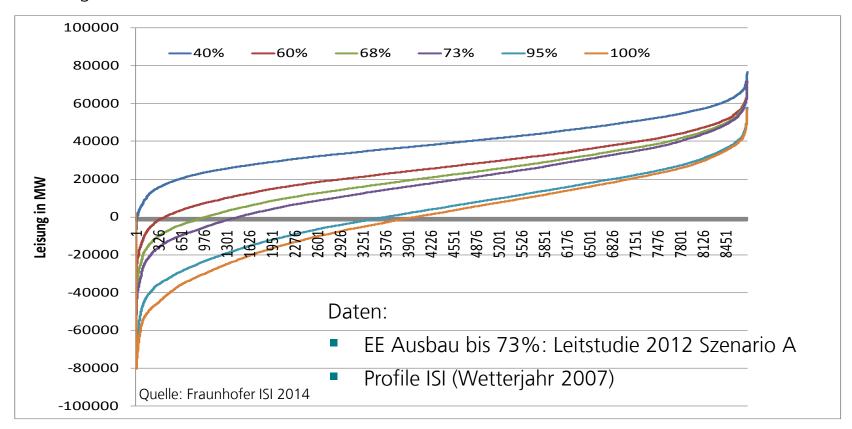
Minutenreserve: Ca. 2500 MW


 Konventionelle Must-Run Kapazität > 10 GW

=> Zukünftig Bereitstellung auch durch Wind und PV

Überschusssituationen – Situation 2020

=> Vielzahl an Flexibilitätsoptionen begrenzen Überschüsse


Date

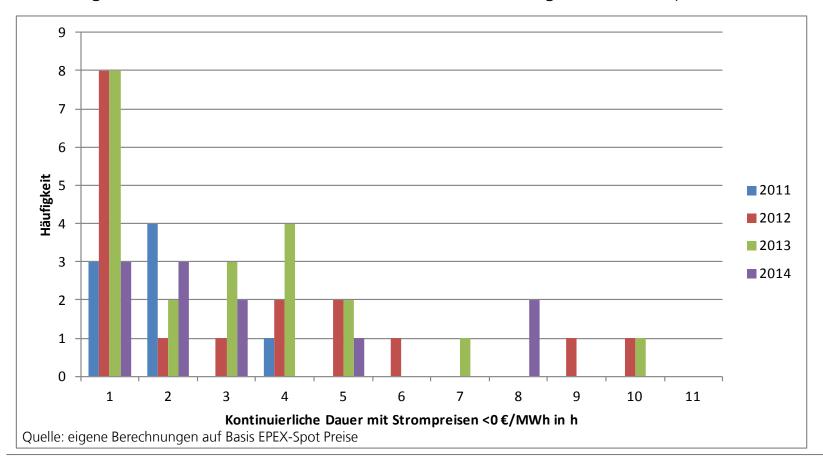
■Wind Onshore■Wind Offshore■Waste■Storage Pump■Storage Generation■PV■Other Renewables
■Nuclear■NetImport■Lignite■Hydro■Hp_consumption■Hot_water Consumption■Hardcoal■Gas
■EMobility - Optimized■Curtailment■Biomass

Überschusssituationen

Leistungsdauerlinie

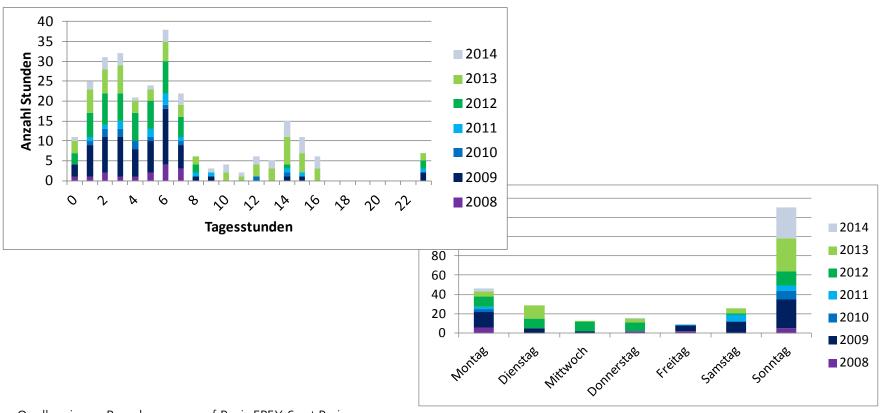
Überschusssituationen

Abgeregelte Mengen, Anteil der abgeregelten Produktion ohne Nutzung von Flexibilitäten


	EE Anteil								
Mustrun	40%	60%	68%	73%	95%	100%			
0 GW	0%	-1%	-2%	-4%	-13%	-16%			
5 GW	0%	-1%	-3%	-4%	-13%	-16%			
10 GW	0%	-2%	-4%	-5%	-14%	-17%			
15 GW	-1%	-5%	-7%	-8%	-16%	-19%			
20 GW	-4%	-10%	-11%	-12%	-19%	-22%			

Quelle: Fraunhofer ISI 2014

- Bei EE-Anteil von 40%: Überproduktion sehr begrenzt
- Absenkung "Must run" und Ausbau Export reduzieren Überproduktion auch bei 60% EE
 - Einbindung RES in Systembetrieb
 - Marktkopplung und Integration in Europäischen Strommarkt


Dauer negative Preise

Häufigkeit und kontinuierliche Dauer des Auftretens negativer EPEX-Spot Preise

Tageszeiten und Wochentage mit negativen Preisen

Auftreten negativer EPEX-Spot Preise nach Tageszeit und Wochentag

Quelle: eigene Berechnungen auf Basis EPEX-Spot Preise

Entwicklung Einspeisemanagement/ Regelbarkeit der Einspeisung

- Einspeisemanagement ohne Kompensation kritisch für Investitionen in neue Anlagen
- Rückwirkungen auf alle EE-Technologien, Rolle der Eigenerzeugung
- Unsicherheiten und mögliche Erlösrisiken durch Einspeisemanagement erhöhen ggf.
 Finanzierungskosten für neue Anlagen
- Regelbarkeit gewinnt mit Zubau weiter an Bedeutung
- Insbesondere größere Anlagen müssen steuerbar sein, Kleinanlagen in den kommenden Jahren noch unkritisch
- Vermarktungs- und Steuerungskonzepte aber jetzt weiterentwickeln

Schlussfolgerungen

Welche Herausforderung sind am relevantesten

- Dynamik der Einspeisung steigt weiter an
- Deckung der Spitzenlasten als auch Umgang mit hoher Einspeisung bei niedriger Last
- Sicherstellung des Systembetriebs
 - Intra-Day Anpassung und Erhöhung der Prognosegenauigkeiten
 - Einbindung aller Flexibilitätsoptionen
- Reduktion des Bedarfes an "Must run" Anlagen ist mittelfristig von besonderer Bedeutung
 - Einbindung erneuerbarer Energien in den Regelenergiemarkt (Wind und PV)
 - Alternative Wärmebereitstellung & Speicherung bei KWK Anlagen
- Gewährleistung der Regelbarkeit und Reaktion auf Marktpreissignale zunehmend auch für kleine Anlagen vorsehen

Kontakt

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

Dr. Marian Klobasa Tel: +49 (0) 721 / 68 09 – 287

Mail: m.klobasa@isi.fraunhofer.de

Fraunhofer-Institut für System- und Innovationsforschung ISI Breslauer Straße 48, 76139 Karlsruhe www.isi.fraunhofer.de

