

FRAUNHOFER-INSTITUT FÜR SYSTEM- UND INNOVATIONSFORSCHUNG ISI

# BATTERIEN – NACHHALTIGKEIT UND KREISLAUFWIRTSCHAFT ALS ZUKUNFTSMÄRKTE

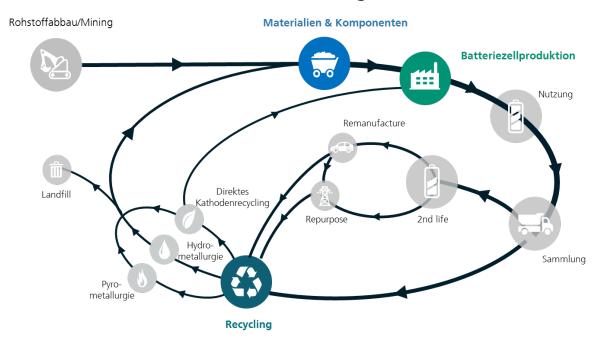
VORTRAG IM RAHMEN DER ROADMAP ENERGIEEFFIZIENZ 2045

Tim Hettesheimer

Fraunhofer ISI

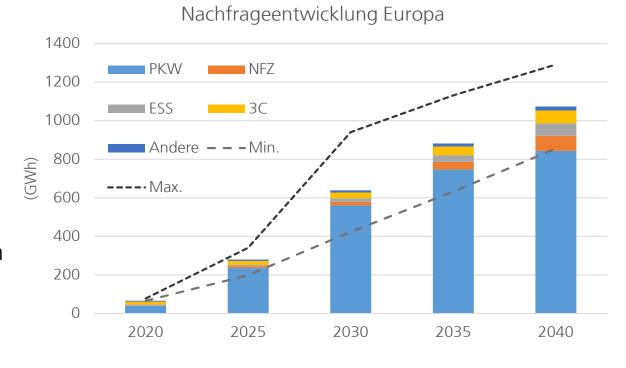
17.12.2021

CHARGING


CHARGING

ENPERATURA

ANB LEWIS AND LEWI

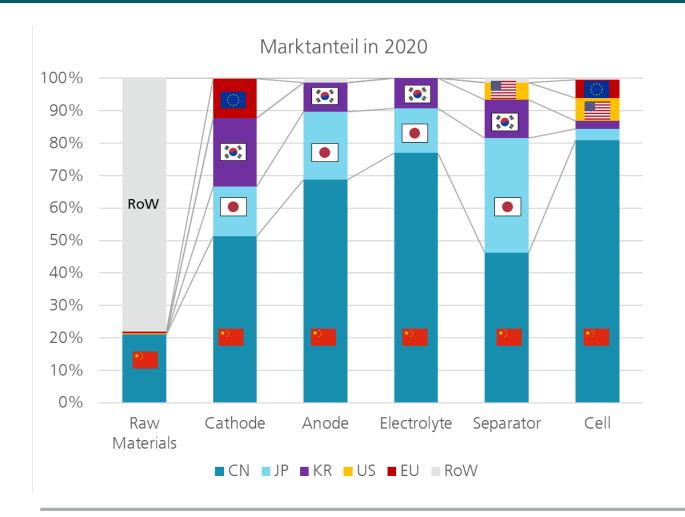

## Agenda

- Batterien als Zukunftsmarkt Treiber für das Wachstum
- Globale Wertschöpfungsketten und die Rolle von Deutschland und Europa darin
- THG-Bilanz von Batterien: Material- und Energieeffizienz als Schlüssel zu mehr Nachhaltigkeit
  - Batterieproduktion
  - Batterierecycling
- Die Batterie Directive als flankierende Maßnahme



## Zukunftsmarkt Batterien: Nachfrageentwicklung in Europa Traktion, stationär und Elektronik

- Treiber Elektromobilität mit hohen zweistelligen Wachstumsraten
- Unsicherheiten aufgrund der hohen Dynamik (z.B. "Verbrenner-Aus"), viel passiert zwischen 2025 und 2035
- Haupttreiber sind Batterien für PKW
- Spätestens 2040 Marktnachfrage von über 1 TWh in Europa




1 GWh ~~ 5 kt

PKW: Personenkraftwagen; NFZ: Nutzfahrzeuge; ESS: Energy storage system / stationäre Speicher; 3C: Computing, consumer, communication; Andere: eBikes, Scooter und sonstige Anwendungen

# Globale LIB-Wertschöpfungskette und die Rolle der EU

Europa in der WSK "nur" wichtiger Endkunde



- China entlang der WSK für LIB der führenden Anbieter
- Rohstoffe kommen jedoch aus RoW (Chile, Australien, Kongo,..)
- Europa bisher nur im Bereich
   Kathodenmaterialien und Zelle vertreten.
- Jedoch starkes Wachstum aufgrund der Endkunden (OEM)
- Der überwiegende Teil der Wertschöpfungskette befindet sich außerhalb der FU
- Zulieferung bedeutet: Import von Ressourcen nach Europa
- Eine Einflussnahme darauf ist daher nur bedingt möglich

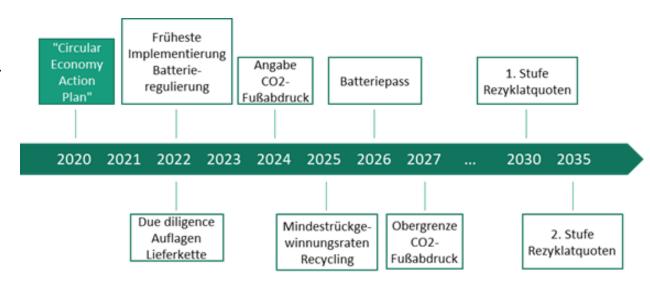


# Regulatorische Rahmenbedingungen

## Vorschlag der Europäischen Kommission



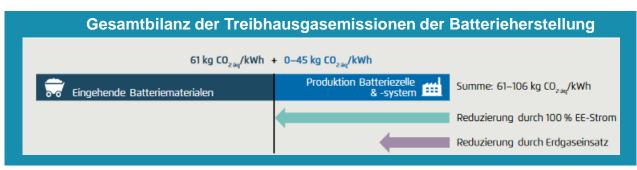
Bei der Directive handelt es sich um einen Vorschlag im Zuge des CEAP, der frühestens 2022 übernommen wird

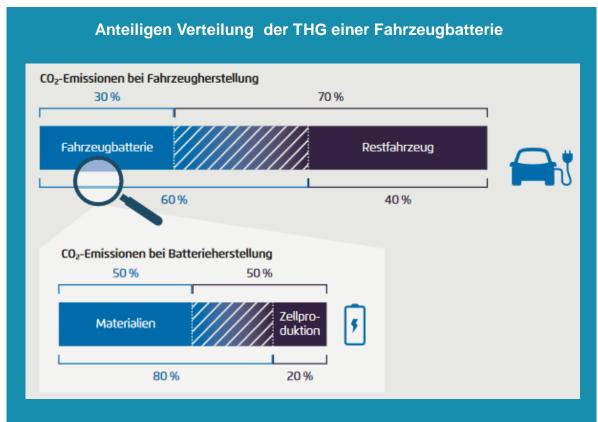

- 2022: Einführung von Due Dilligence zur Einhaltung von ökol. und soz. Standards
- 2026: Einführung des Batteriepasses

#### CO<sub>2</sub>-Footprint

- 2024: Erfassung des CO<sub>2</sub>-Footprints der Batterien
- 2027: Festlegung von Obergrenzen für den des CO<sub>2</sub>-Footprints

#### Recycling


- 2025: Es sollen minimale Recyclingeffizienzen erfüllt werden
- Rezyklate sollen in die Herstellung neuer Batterien fließen (Mindestquoten ab 2030 und 2035)



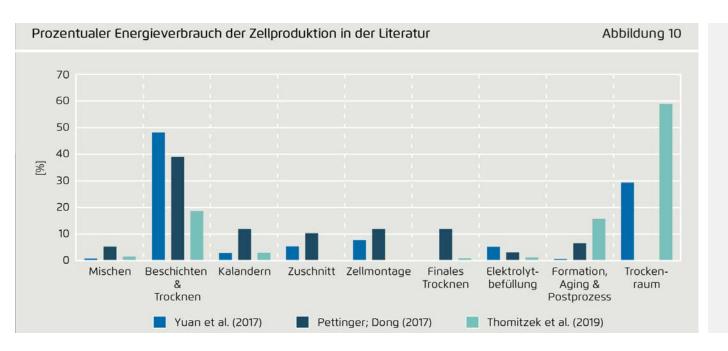

# **CO<sub>2</sub>-Footprint der Batterie**

#### Anteile an den CO2-Emissionen und Einfluss des Energieträgers

- Die Fahrzeugbatterie macht zwischen 30-60% der CO<sub>2</sub>-Emissionen bei der Fahrzeugherstellung aus
- Dabei entfallen wiederum mehr als die Hälfte der Emissionen auf den Abbau und die Bereitstellung der benötigten Materialien.
- Die Zellfertigung ist für die restlichen 20-50% des CO₂-Fußabdruck der Batterie verantwortlich.
- Der Strommix hat einen erheblichen Einfluss bei der Zellproduktion








# Energieverbrauch in der Zellproduktion

#### Hotspots und Potentiale in der Batterizellproduktion

Eine Verbesserung der THG-Bilanz in der Produktion ist möglich durch:

- Prozessoptimierung → Verringerung des Ausschuss
- Querschnittstechnologien → Abwärmenutzung
- $\blacksquare$  Prozessinnovationen  $\rightarrow$  Neue Verfahren zur Verringerung des Energiebedarfs



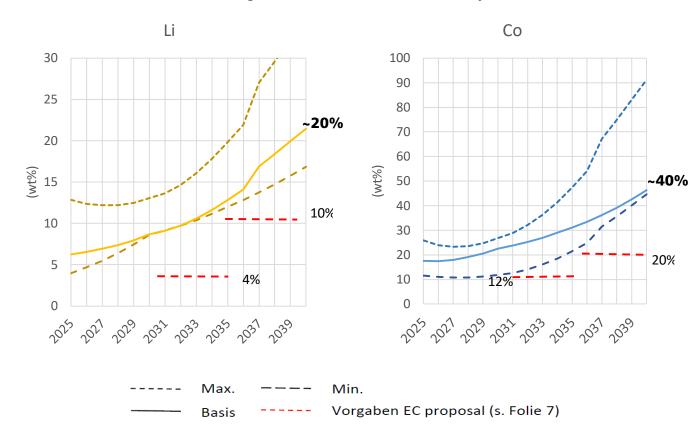
#### **Hotspots:**

Trocknungsprozesse & Trockenraum machen ~80% der Gesamtenergiebedarfs\* aus



- Neue Prozesse (z.B. Trockenbeschichtung ~ -70%\*)
- Infrastruktur (z.B. Micro-Env. ~ 50%\*)

Innovation (noch nicht marktreif) können den produktionsbedingten Energiebedarf\* bis ~2030 halbieren




# **Batterierecycling - Europa**

#### Beitrag eines Batterierecyclings für eine Kreislaufwirtschaft

- Deckung des Bedarfs an Li zu ca. 20% und von Co zu mehr als 40% (Bedarf 2040) durch Rezyklate möglich
- Ab 2030: Mrd. € Markt (Annahme konstante Rohstoffpreise)
- 2,7 Mrd. € an kumulierten Initialinvestitionen für Recyclingkapazitäten\* bis 2040
- 8 000 Arbeitsplätze (ohne Sammlung)\* aufgrund von Recyclingkapazitäten in EU bis 2040

#### Bedarfsdeckung Batterierohstoffe durch Rezyklate





## Zusammenfassung und Fazit:

## Batterien – Nachhaltigkeit und Kreislaufwirtschaft als Zukunftsmärkte

- Starkes Marktwachstum: Bedarf für die EU wird bis vrs. 2040 über 1 TWh liegen. Haupttreiber sind die PKW
- Abhängigkeit von außereuropäischen Lieferanten: Die WSK für Batterien befindet sich größtenteils außerhalb der EU.
- Großes THG- und Energieeinsparpotenial bei der Batterieherstellung:
  - Grüner Strom stellt einen Haupthebel dar zur Verringerung der CO2-Emissionen bei der Produktion und entlang der WSK
  - Innovationen bieten die Möglichkeit den Energieverbrauch bei den thermischen Prozessen deutlich zu verringern
  - Materialen machen über die Hälfte der CO2 Emissionen aus. Recycling und die Verwendung von Rezyklaten bietet hier die Möglichkeit diesen Einfluss zu reduzieren

#### Fazit: "Batterien – Nachhaltigkeit und Kreislaufwirtschaft als Zukunftsmärkte"

- Die Nachhaltigkeit von Batterien ist ein zentrales Thema und Verbesserungen finden sowohl auf Produktseite, bei dessen Herstellungsprozess sowie über den kompletten Produktlebenszyklus statt
- Der Kreislaufwirtschaft und insb. dem Recycling kommt hierbei eine Schlüsselrolle zu. Zudem entsteht eine neue Industrie mit Wertschöpfung und Arbeitsplätze in der EU.
- Nachhaltigkeit und Kreislaufwirtschaft werden auch von pol. Seite aus gefördert und die Battery Directive flankiert diese Bestrebungen mit innovativen Ansätzen (Fokus auf ganze WSK, Batteriepass, Zweitnutzung, Recycling,..)



## Vielen Dank!

Dr. Tim Hettesheimer | Dr. Luis Tercero Espinoza | Dr. Denis Stijepic Dr. Christoph Neef | Dr. Axel Thielmann

#### **Kontakt:**

Dr.-Ing. Tim Hettesheimer

Competence Center Energietechnologien und Energiesysteme

Fraunhofer-Institut für System- und Innovationsforschung ISI

Breslauer Straße 48 | 76139 Karlsruhe

Telefon +49 721 6809-448 | Fax +49 721 6809-77-448

Tim.Hettesheimer@isi.fraunhofer.de









