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Executive Summary 
 
On the 1st of January 2020, the EU Regulation 2019/943 of the European Parliament and of 
the Council on the internal market for electricity came into force. In particular, this regulation 
updated the methodology for (European) Resource Adequacy Assessments (ERAA) to im-
prove it along several dimensions, one of which is the inclusion of climate change impact on 
adequacy assessment. ACER provided further clarification in its decision by 2nd October 
2020 on the ENTSO-E draft methodology for the ERAA, which forms also a basis for na-
tional RAA. 
 
As stated in the ACER methodology for ERAA, “the expected frequency and magnitude of 
future climate conditions shall be taken into account in the PECD, also reflecting the fore-
seen evolution of the climate conditions under climate change”. To this effect, three method-
ological options were proposed by ACER to take climate change into account in RAA: 

a. rely on a best forecast of future climate projection 
b. weight climate years11 to reflect their likelihood of occurrence (taking future climate  
    projection into account) 
c. rely at most on the 30 most recent historical climatic years included in the PECD 

 
In this report, we describe, examine and compare these options, highlighting their appropri-
ateness and effectiveness by reviewing research papers and methodologies followed by 
TSOs to reflect climate change in adequacy studies. 
 
First, our literature review suggests that climate change is expected to have an impact on 
power systems, on both the supply and demand of electricity, but also on adequacy:  

• Impact on power demand and power plants efficiency due to temperature 
change: Over the timeframe of the RAA of ten years, climate change is expected on 
average and depending on location to decrease heating demand and increase cool-
ing demand due to rising temperatures. The direct implication for power systems is 
that both the shape and volume of electricity demand will be affected. Furthermore, 
climate change might introduce higher ‘volatility’ in the trends with more extreme 
events during both winter and summer seasons compared to the past ~30 years of 
observed climate data. Temperature increase impact should also be expected on the 
supply side, namely on thermal capacity by decreasing thermal efficiency as temper-
ature increase. Furthermore, power plants failure rate is correlated with the tempera-
ture, which need to be reflected in the adequacy assessments. 

• Impact on hydro production and thermal plant availability due to changes in 
precipitation: the conducted literature review indicates a prevalence of projected de-
crease in hydropower potential. This is the result of changes in precipitation, evapo-
ration that affect the variability and volumes of water available for power plants. Addi-
tionally, there is an increased risk of the thermal power plant located along rivers 
shutdowns during severe droughts. 

• Impact on variable renewables production due to changes in wind speed and 
solar irradiance levels: the impact on wind and solar generation is less clear-cut. 
The findings about wind production are mixed, with diverging results across regions 
and between studies, suggesting both potential increases and decreases. Concern-
ing PV generation, negligible to small positive effects from changes in irradiance are 
expected, while temperature increase lowers efficiency.  

 
1 A climate year defines the weather variables at a specific location for that year (wind speed, irradiance, temper-
ature etc…) 
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Studies2 that analyse the impact of climate change on adequacy conclude that climate 
change would decrease LOLE in cold countries, mainly due to a reduction of heating de-
mand during winter. Conversely, warm countries could see their LOLE increasing due to a 
higher expected cooling demand over summer. Additional research needs to be conducted 
in that field, with state-of-the-art RAA studies aiming to provide further insights on the evolu-
tion of LOLE with respect to raising temperatures by leveraging climate databases that ac-
count for climate change effects. 
 
Second, we discuss the available methods and examples of applications implementing 
ACER’s options.  
 
Finally, we assess the three ACER’s options with respect to three criteria: (i) accuracy; (ii) 
complexity; and (iii) compatibility with other studies.  
 
Overall and albeit more complex, the first option which consists in relying on a projection of 
future climate appears to be the most promising one out of the three, as it allows to assess 
the climate change effects on all climate variables used as inputs into power market model-
ling (temperatures, wind speeds, precipitation and solar radiation) in a consistent way. Vari-
ants of this option that aim at reducing its complexity by bypassing GCMs and RCMs should 
be used in our view as temporary solutions as they do not provide a fully internally consistent 
dataset with respect to climate variables.  
 
We consider the second option in its generalised formulation, consisting in an adjustment of 
the historical data to account for the historical climate trends. This option can be quite accu-
rate over the timeframe of the RAA of ten years over which the climate change effect is not 
expected to be very significant, assuming that historical trends are representative for the 
next ten years. However, this option may lack consistency between all climate variables ob-
tained through extrapolation.  
 
The third option which consists in relying on the 30 most recent historical climatic years with-
out any refinement or trend correction is the simplest option out of the three since it does not 
require any additional modelling. However, the last 30 years contain the historical climate 
trend and using these data directly would most likely result in underestimating the effect of 
the climate change over the next ten years. Additionally, limiting the dataset to the last 30 
years may not be enough to capture rare climate events that could affect adequacy anal-
yses. Considering a longer time horizon might allow to better account for such events statis-
tically. 
 
We thus conclude that ACER’s option 1, in its full form (without applying shortcuts) is the 
most accurate and preferable option for including climate change in RAA, albeit involving 
quite complex modelling. The use of climate data generated by climate models ensures con-
sistency between climate variables obtained from the model. Furthermore, the complexity of 
option 1 can be justified by the flexibility of this approach to apply and test in RAA different 
climate evolution scenarios.  
 
ACER’s option 2 considered in the generalised form as adjustment of the historical data to 
account for the historical climate trends, could still be a reasonably accurate option to ad-
dress climate change over the time horizon of ten years with little additional modelling ef-
forts. However, this option appears as an intermediary solution rather than a long-term one. 
 
 

 
2 E.g., Harang et al., “Incorporating climate change effects into the European power system adequacy assess-
ment using a post-processing method”, 2020 (https://doi.org/10.1016/J.SEGAN.2020.100403) 

https://doi.org/10.1016/J.SEGAN.2020.100403
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1. Introduction 
In this report, we present, develop, and analyse detailed methodologies for the implementa-
tion of the ACER’s options to consider climate change in the scope of RAA (Resource Ade-
quacy Assessments).   
 
The objective of RAA is to assess the average number of hours in which a country’s electric-
ity demand cannot be met by domestic available resources or via imports through intercon-
nections (Loss of Load Expectation or LoLE). RAA typically relies on a Monte Carlo simula-
tion, which is used to simulate each target year several times with different random inputs to 
obtain a large sample of results, representative of possible future states of the grid. The ob-
jective is thus to obtain a robust outcome in the face of uncertainty. Random inputs include 
variables dependent on the climate profiles (RES generation, demand) and random outages 
events derived from available statistics. 
 

 
Figure 1. Monte Carlo simulation in ERAA 

 
The ERAA methodology as approved by ACER on the 2nd of October 2020, which is also the 
basis for national RAA in the EU, aims at ensuring a realistic assessment of resource ade-
quacy, by requiring that the best forecast of the system state will be used to assess as best 
as possible the overall adequacy of the electric power system to supply current and pro-
jected demand levels. As such, it aims to best reflect system development trends, including 
changes of generation capacity mix, change of demand patterns, network development, 
trends in market design and others. 
 
One relevant driver for system development trends is climate change. The ENTSO-E meth-
odology for ERAA as approved by ACER thus suggests that the evolution of future climate 
conditions or climate change should be taken into account in RAA. In its decision on the 
methodology, ACER suggests3 three potential options to reflect climate change in the PECD 
(Pan European Climate Database):  

I. Rely on a best forecast of future climate projection; 
II. Weight climate years to reflect their likelihood of occurrence (taking future climate 

projection into account); or  
III. Rely at most on the 30 most recent historical climatic years included in the PECD.  

 
The ACER approval also states a minimum spatial and temporal granularity for the input 
data in RAA, including the variables derived from the climate data: 

• The market time unit (MTU) shall be smaller than or equal to an hour; and 

 
3 Article 4, 1(f) 

92©2020 Guidehouse Inc. All Rights Reserved

Weather uncertainties Outages uncertainties Combined uncertainties

M x N
Monte Carlo 

samples years

N random draws for 
unplanned outages

M random draws of 
interdependent climate 

years
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• The spatial granularity of modelled zones shall be set at least by the smallest level 
between country and bidding zone. 

This report aims to analyse the three suggested options to consider climate change with re-
gards to their respective strengths and weaknesses. The report is structured as follows:   
 

• First, we provide a summary of the relevant existing literature on climate change im-
pact on power markets in general and on adequacy in particular.   

• Second, we provide detailed descriptions of possible methodologies for implement-
ing ACER’s proposed options in ERAA, based on the academic literature and the ap-
plied studies (e.g. performed by TSOs). We further map analysed methodological al-
ternatives to ACER’s proposed options. 

• Finally, we evaluate the strengths and weaknesses of the ACER’s proposed options 
and the extent to which they can appropriately reflect future climate change in Re-
source Adequacy Assessments, their explanatory power, and uncertainties that they 
may have. In this assessment we also rely on the academic discussion during the 
workshop held on 21 September 2021. 
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2. Literature research on impact of climate change on ade-
quacy and power markets 

In this section, we present an analysis and summarise the main findings of the available aca-
demic literature on the inclusion of climate change effects in power markets modelling. We 
distinguish two types of research:   

• Assessing climate change impacts on the elements of power systems in general, 
and  

• Assessing the impacts of climate change on adequacy.  
 
The key takeaways of this literature review can be summarised as follows: 

• Climate change is expected on average and depending on location to have a clear 
impact on power demand through increasing temperature, in particular, by decreas-
ing heating demand in winter and increasing cooling demand in summer. The impact 
of temperature increase should also be expected on thermal capacity, decreasing 
thermal efficiency. 

• Precipitation will also be affected, decreasing the hydropower potential and water 
available for hydro power plants. In addition, there is an increasing the risk of power 
plant shutdowns during droughts, especially on power plants located along rivers. 

• The impact on wind and solar generation is less clear-cut. The findings about wind 
production are mixed, with diverging results across regions and between studies, 
suggesting both potential increases and decreases. Concerning PV generation, neg-
ligible to small positive effects from changes in irradiance are expected, while tem-
perature increase lowers efficiency.  

• Overall, climate change is expected to decrease LOLE due to lower demand over 
winter. However, in warm countries LOLE may increase because of higher summer 
demand.   

• Power plants failure rate is correlated to temperature, which might make it necessary 
to adjust the power plant fleet to climate change in order to meet security of supply 
standard when taken into account in adequacy assessments. 

2.1 Assessing climate change impacts on power systems in general 

Several studies assess more generally the impact of climate change on energy systems, un-
derlying the regional differences in the impacts that could arise from climate change, and 
providing insights that can broadly be sorted in three categories: (i) impacts on the supply 
side; (ii) impacts on the demand side; and (iii) other impacts. The three sections below distil 
the main findings of the literature review in these three categories. 

2.1.1 Impacts on the supply side 

Energy production is expected to be affected by climate change. Indeed, renewable energy 
sources which are dependent on climate variables will be impacted by changes in precipita-
tion, temperature, wind speed and solar irradiation: this is the case for solar, wind and hydro 
assets. As underlined by Cronin et al. (2018)4, the literature shows differences between im-
pact studies which are mainly due to two factors: (i) the climate projections used as inputs to 

 
4 Cronin et al. (2018), Climate change impacts on the energy system: a review of trends and gaps, NIH 
(https://doi.org/10.1007/s10584-018-2265-4) 
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the impact models; and (ii) the impact model assumptions. Therefore, any impact should be 
viewed in light of this uncertainty as additional research is necessary in this field. For solar 
assets, although an increase in temperature decreases the efficiency of photovoltaic panels, 
it is expected to be offset by slightly higher levels of irradiance that would increase solar pro-
duction. Furthermore, CSP output (Concentrated Solar Power systems) is expected to in-
crease as the efficiency of CSP plants increases with temperature. 

The impacts of climate change on wind resources are mixed – results diverge across regions 
and between studies. In Europe, both an increase and a decrease in generation is reported 
in several studies. Pryor et al. (2020) indicate in their paper5 that the climate change impact 
on wind power generation is highly uncertain as it is very hard to predict whether wind speed 
will increase or decrease, at either global or regional scales. Therefore, results from studies 
should be seen in light of this uncertainty. 
 
Impacts on hydro assets are also mixed and highly dependent on the regions, as precipita-
tion are either expected to increase or decrease differently per location. The meta-analysis 
conducted by Yalew et al. (2020) indicate a prevalence of projected decrease in hydropower 
potential in the studies they reviewed. This is the result of changes in precipitation, evapora-
tion that affect the variability and volumes of water available for power plants. T.H. van Vliet 
et al. (2016)6 also highlight a decrease in usable hydropower plant usable capacity due to 
climate change in their study. 

 
Figure 2 Climate change impact on energy systems per warming level and regional level7 

 
Another expected impact will be on thermal power plants which might see their cooling sys-
tems affected by temperature changes. Thermal generation efficiency might decrease and 
the risk of power plant shutdowns during droughts may increase. The largest impacts are ex-
pected on power plants located along rivers: plants located along the same river may experi-
ence highly correlated shutdowns. Additionally, plants relying on biomass or biofuels could 
see an impact on their combustible. 

2.1.2 Impacts on the demand side 
Impacts of climate change are also expected on the demand side, mainly from temperature 
changes that will affect both the shape and the overall volume of power demand. Indeed, 
changes in temperature affect heating and cooling requirements. Material changes in cooling 
requirements are expected to shift peak power consumption from winter to summer in some 
regions and might affect optimal transmission planning and peak-generation capacity in Eu-

 
5 Pryor et al., “Climate change impacts on wind power generation”, Nature Reviews, earth & environment, 2020 
(https://doi.org/10.1038/s43017-020-0101-7) 
6 . T.H. van Vliet et al. (2016), “Power-generation system vulnerability and adaptation to changes in climate and 
water resources“, Nature Climate Change (https://doi.org/10.1038/nclimate2903) 
7 S. G. Yalew, et al., “Impacts of climate change on energy systems in global and regional scenarios”, Nature En-
ergy, 2020 (https://doi.org/10.1038/s41560-020-0664-z), p4 

https://doi.org/10.1038/s41560-020-0664-z
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rope. Overall, it is expected that heating demand will decrease while cooling demand will in-
crease, with an overall net impact highly dependent on the region and that could be small 
overall as both effects combined compensate each other. 
 
Wenz et al. (2017)8 highlight the expected regional differences in impacts of climate change 
in Europe. They notably report that the average daily peak load and overall electricity con-
sumption could increase by 3% to 7% in Portugal and Spain, while decrease by 2% to 6% in 
northern Europe for countries such as Sweden and Norway. Figure 3 below details addi-
tional results under two RCP scenarios (Representative Concentration Pathway): (i) RCP 
4.5; and (ii) RCP 8.5. These two scenarios intend to capture how concentration in GHG 
emissions in the atmosphere will change in the future as a result of human activities. The 
number corresponds to the radiative forcing values in the year 2100 (respectively 4.5 W/m2 
and 8.5 W/m2). 

 
Figure 3 Percentage change in average daily peak load in Europe from 2006-2012 to 2080-20999 

Kozarcanin et al. (2019)10 further highlight the impact of a temperature increase due to cli-
mate change on cooling and heating demand for power systems and the regional differences 
that are expected in their article “21st Century Climate Change Impacts on Key Properties of 
a Large-Scale Renewable-Based Electricity System”. 

 
8 Wenz et al., “North South polarization of European electricity consumption under future warming.”, 2017, PNAS 
(https://doi.org/10.1073/pnas.1704339114)  
9 Wenz et al., “North-south polarization of European electricity consumption under future warming”, 2017 
(https://doi.org/10.1073/pnas.1704339114),p5 
10 Kozarcanin et al. (2019), “ 21st Century Climate Change Impacts on Key Properties of a Large-Scale Renewa-
ble-Based Electricity System“, ScienceDirect (https://doi.org/10.1016/j.joule.2019.02.001) 

https://doi.org/10.1073/pnas.1704339114
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2.1.3 Other impacts 
Indirect impacts might materialise as well on top of direct supply and demand impacts. Se-
leshi G. Yalew et al. (2020)12, in their meta-analysis “Impacts of climate change on energy 
systems and regional scenarios”, underline that cross-sectoral competition for resources 
might arise from climate change, giving the example of water for producing electricity with 
hydropower, cooling thermal power plants, irrigation and manufacturing. They also highlight 
possible material changes in investment expenditures to adapt to climate change, namely on 
cooling and heating infrastructures. 
 
Impacts are also expected on transmission and distribution infrastructure as highlighted by 
Fant et al. (2020)11 with transmission and distribution costs expected to rise as lifespan of 
installations is reduced with higher temperatures. 
 
Figure 4 below summarises impact on energy systems across the three categories explored 
in this chapter: (i) supply; (ii) demand; and (iii) others. This figure was extracted from Seleshi 
G. Yalew meta-analysis. 

 
Figure 4 Climate change impacts on energy systems12 

 

2.2 Assessing the impact of climate change on adequacy 

Several studies directly address the impact of climate change on electricity system ade-
quacy. In particular, three papers stand out, which are described below. The key takeaways 
of this analysis are: 

• On average LoLE is expected to decrease due to lower demand over winter. How-
ever, significant differences between countries are expected, with LoLE increasing in 
warm countries due to expected increase in consumption over summer; 

• Wind and solar production are not expected to change much; 

 
11 Fant et al. (2020), “Climate change impacts and costs to U.S. electricity transmission and distribution infra-
structure”, Elsevier (https://doi.org/10.1016/j.energy.2020.116899) 
12 S. G. Yalew, et al., “Impacts of climate change on energy systems in global and regional scenarios”, Nature 
Energy, 2020 (https://doi.org/10.1038/s41560-020-0664-z), p5 
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• With power plants failure rates being correlated to temperature, climate change will 
negatively impact adequacy, as additional capacity will be required to ensure security 
of supply targets when taken into account in the modelling. 

 

2.2.1 First study: “Incorporating climate change effects into the European power sys-
tem adequacy assessment using a post-processing method” by Harang et al. 

In this study, Harang et al. (2020)13 introduce an approach to include the effects of climate 
change overt the short-term (5-10 years) into European adequacy studies and discuss its 
advantages and limitations. Essentially, the approach relies on modifying existing profiles 
based on the impact of climate change derived from a GCM (General Circulation Model).  
 
The methodology used the following four steps, as described in the hybrid approach in 3.2.1: 

1. Gather existing datasets for temperature projection. In this article, the temperature 
evolution was derived from the EURO-CORDEX climate simulation based on RCP8.5 
and the demand profiles were taken from ENTSOE’s PEMMB (Pan European Market 
Modelling Database). 

2. Compute existing profiles temperature sensitivity curves, that is how demand evolves 
at different temperature level (see Figure 12). Run a regression and compute the co-
efficients of the regression. 

3. Deduct the new loads based on regression coefficients and the temperature shift of 
the temperature projection. 

4. Run an adequacy study with the new profiles computed 
 
Results of this analysis show a non-negligible impact on adequacy in the MAF model 2025. 
Indeed, in the simulation in which only the power demand was adjusted to take into account 
climate change, the average LOLE in the EU decreased by 59% and the unserved energy by 
30% relative to a scenario that does not take into account climate change. This average 
value encompasses large geographical differences with some market nodes that see their 
LOLE increasing (for instance Turkey and Cyprus by 60% and 112% respectively) and other 
that see their LOLE decreasing (for instance Austria). Figure 5 provides additional simulation 
results analysed in this paper. 
 

 
13 Harang et al., “Incorporating climate change effects into the European power system adequacy assessment 
using a post-processing method”, 2020 (https://doi.org/10.1016/J.SEGAN.2020.100403) 



 

10 
 

 
Figure 5 Change in LOLE in models MAF2025 (the base case); MAF2025 (demand CC affected) and 

MAF2025 (demand and hydro CC affected)14 

 
While simpler to put in place than more advanced techniques that rely on GCM, downscaling 
and synthetic patterns, this methodology also present some caveats as shift in frequency 
and magnitude of extreme events is not considered. Contrary to using outputs from GCMs 
directly, assumptions have to be made on the effect of climate change on target variables 
such as electricity demand or hydro generation, which might introduce significant errors and 
biases. 
 

2.2.2 Second study: “Meteorological conditions leading to extreme low varia-
ble renewable energy production and extreme high energy shortfall” by 
K. Van der Wiel et al. 

 
In this study, K. van de Wiel et al.(2019)15 investigate energy shortfalls resulting from varying 
weather conditions, with energy shortfalls being defined as the residual load, that is the dif-
ference between demand and renewable production. The study focuses on the modelling of 
the situations of the extreme energy shortfalls that may lead to the adequacy issues, that is, 
situations when low renewable production coincides with high demand.  
 
This analysis is based on a very large ensemble simulation from two climate models giving 
3x2000 years of simulated weather conditions. From this data are derived daily wind and so-

 
14 Harang et al., “Incorporating climate change effects into the European power system adequacy assessment 
using a post-processing method”, 2020 (https://doi.org/10.1016/J.SEGAN.2020.100403), p7 
15 K. van der Wiel, “Meteorological conditions leading to extreme low variable renewable energy production and 
extreme high energy shortfall”, 2019 (https://doi.org/10.1016/j.rser.2019.04.065) 

https://doi.org/10.1016/J.SEGAN.2020.100403
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lar generation, as well as the power demand. Such large sampling allows to capture the fre-
quency of extreme events both on the demand side and on the renewable production side. 
The flowchart of their modelling is described in Figure 6 below. 
 

 
Figure 6 Methodology followed to estimate energy shortfalls16 

 
To model the impact of climate change on energy shortfalls, the authors ran two simulations, 
one scenario without climate change impact used as a benchmark, and another one with a 
2C° projected increase in temperature relative to pre-industrial levels.  
The paper finds that both wind and solar production do not change much in response to cli-
mate change both in mean terms and variability terms (standard deviation). Energy demand 
is expected to decrease in the winter season (less heating needed) resulting in lower energy 
shortfalls in winter. K. Van der Wiel et al.(2019) report that their model is not very sensitive to 
high temperatures and that summertime demand does not change in these simulations. 
Changes in occurrences of extreme energy shortfall events are in line with decreased winter-
time energy demand and thus decrease as well in the modelling. It is underlined in the paper 
that the energy demand model used assumes a historical (2006–2015) relationship between 
temperature variations and electrical consumption that will very likely change due to future 
changes in electrical consumption and power system design. 

2.2.3 Third study: “Resource adequacy implication of temperature-dependent 
electric generator availability” by Murphy et al. 

 
In this paper, Murphy et al. (2020)17 analyse the impacts of temperature on outages rates 
and their correlation and show how this impacts resource adequacy in the PJM power mar-
ket (Pennsylvania-Jersey-Maryland). They underline that at both very cold and very hot tem-
peratures, PJM’s fleet is less available than on average, which has a substantial impact on 

 
16 K. van der Wiel, “Meteorological conditions leading to extreme low variable renewable energy production and 
extreme high energy shortfall”, 2019 (https://doi.org/10.1016/j.rser.2019.04.065), p3 
17 Murphy et al. (2020), “Resource adequacy implication of temperature-dependent electric generator availability”, 
Elsevier (https://doi.org/10.1016/j.apenergy.2019.114424) 

https://doi.org/10.1016/j.rser.2019.04.065
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adequacy assessment results. Indeed, current resource adequacy assessments typically as-
sume that generator failures are both independent and invariant to ambient conditions. How-
ever, they demonstrate in their paper that extreme temperatures are a driver of correlated 
failures, which increase capacity procurement between 0.5% and 1.5% when accounted for 
in resource adequacy assessments (in scenarios in which temperature increases by one and 
two degrees respectively). To conduct this analysis, generators’ forced outage rate was 
modified to depend on ambient temperature rather than fixing it at an average value in an 
open-source resource adequacy tool (RECAP). The model was calibrated to find the capac-
ity required to limit the frequency of loss-of-load events to once in 10 years over a 11-year 
horizon, consistent with PJM adequacy assessment approach. 
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3. Methodology options to address climate change in 
ERAA 

In this section, we provide a detailed description of the potential implementation methodolo-
gies of the three options proposed by ACER as well as the information and input data that 
would be needed, and the modelling effort that would be required to implement these op-
tions. 
 
Adequacy assessments model the weather-related uncertainties affecting renewable power 
production and power demand as well as outages affecting power plants.  
 
Not accounting for climate change is a problem, because adequacy of power system is typi-
cally affected by weather events, such as periods of very high demand due to cold tempera-
ture or periods of very low renewable production due to the absence of wind or solar produc-
tion, or combinations of such events, which may lead to energy shortfalls. 
 
The crux of adequacy modelling is to properly forecast the weather impact on power mar-
kets, by correctly assessing average conditions, as well as occurrences of severe weather 
events that drive the adequacy situations. Accounting for the occurrence of the severe 
events is tricky because, by nature, these events are rare. Any estimation of their frequency 
is uncertain, and a very large data sample is required to reduce sampling uncertainty. It is 
generally considered that 30 years is enough to represent the mean climate in the scientific 
community depending on the location,18 but it would not necessarily be enough to be repre-
sentative of extreme events. Furthermore, the lack of representativeness of 30 years cannot 
necessarily be solved by adding additional historical weather years, as this may increase the 
overestimation of cold waves in a context where the climate is expected to warm up. Finally, 
only accounting for changes in averages might not be sufficient to assess adequacy appro-
priately as adequacy issues might arise from severe weather events such as heat waves or 
cold waves that affect the volatility of underlying distributions rather than average values. 
 
The overall process of going from climate data to power markets input data is described in 
the figure below. Weather data from climate database feeds into algorithms to convert them 
into production or demand data. For instance, wind speed is used to derive onshore wind 
production patterns.  
 

 
Figure 7 From climate data to power market data 

 
Two factors need to be jointly addressed to ensure accuracy of the adequacy forecast:  

• Impact of the year-to-year weather variation assuming the same climate condi-
tions. Even in the absence of climate change, weather conditions vary significantly 

 
18 NASA.gov (https://www.nasa.gov/mission_pages/noaa-n/climate/climate_weather.html), workshop conducted 
on the 21st of September 2021 
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from one year to another. The adequacy assessment needs to be able to correctly 
account for such variation and to accurately represent the probability and magnitude 
of occurrence of severe weather events independently of climate change; and 

• Impact of the climate change. The climate change further impacts the year-to-year 
variation of weather, changing both the average and the variance of the weather vari-
ables. To the extent climate change impacts the occurrence and magnitude of severe 
weather events, this could have an impact on adequacy assessment.  

 
As of today, the climate data used as input in the overall process typically does not consider 
climate change, as it is in general either based on historical data or reanalysed historical 
data. The data available typically covers the last 30+ years.  
 
For example, one can use the solar irradiation, wind and temperature data over a number of 
historical years and then apply these patterns to a forecast year (e.g. 2025) to simulate the 
range of resulting demand and RES production profiles. Such demand and RES production 
profiles would reflect the historical year-to-year weather variation. The historical climate data 
also reflects the climate change dynamics over the time period covered by the historical 
data, however, it may not be able to correctly reflect the expected evolution of the climate in 
the future and hence, would not properly account for the latter factor.   
 
In the rest of the section, we present a range of methodologies of deriving the climate data 
for RAA addressing these two factors. In particular, we start from the approaches that derive 
the climate data from Global Circulation Models as well as various intermediate options and 
provide examples of such implementation. Finally, we map the available approaches to the 
three ACER’s proposed options.   

3.1 Deriving climate data from General Circulation Model  

The first methodology for deriving climate data consists in creating synthetic climate year 
data using a combination of GCMs (General Circulation Model) and RCMs (Regional Cli-
mate Model). We describe this general approach below. 
The methodology to go from a GCM to power market model inputs essentially relies on four 
main steps described in Figure 8 and further detailed below. 
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Figure 8 using future climate projection - methodology overview 

 
Step 1: General Circulation Models 
The evolution of climate variables is typically projected via General Circulation Models 
(GCM) which emulates physical interactions between climate variables. These complex 
models include a wide array of effects ranging from atmospheric chemistry to ice sheet dy-
namics and provide as an output a projection of climate variables that can be used as inputs 
in power market studies. Due to the complexity of these models and to the limitation of com-
puting power, the earth is divided into small areas across the height and the depth of the at-
mosphere and oceans. This simplification is done to calculate the state of the climate and its 
evolution in each area such as temperature, air pressure, humidity, wind speed, etc. The 
size of these areas is typically referred as “spatial resolution”. On average, doubling the spa-
tial resolution of a GCM increases tenfold the amount of computing power necessary to run 
the model in the same amount of time. Similarly, a compromise must be made on the time 
resolution of the model, that is how often it will compute the state of the climate system. 
 
GCMs typically take as input the GHG concentration of the atmosphere as climate change 
depends on it to a large extent. As such, various trajectories of global warming and more 
generally climate variables evolution can be modelled in response to different radiative forc-
ing evolutions such as given by the IPCC (Intergovernmental Panel on Climate Change) sce-
narios (RCP 4.5, RCP8.5 etc.). RCP scenarios (Representative Concentration Pathway) in-
tend to capture how GHG and aerosol emissions in the atmosphere as well as land use will 
change in the future as a result of human activities. The number corresponds to the addi-
tional radiative forcing values in the year 2100 (respectively 4.5 W/m2 and 8.5 W/m2), that is 
the difference between the energy flowing into the atmosphere from sunlight that is absorbed 
by the earth and the one that is reflected back into space. The higher this number, the higher 
the warming effect.  

 
Outputs from GCMs can be extremely valuable to assess the impact of climate change on 
power markets. Indeed, it is expected that both the production side and the demand side will 
be affected by the evolution of climate variables, with changes of wind speed, irradiation and 
water flow patterns affecting the production of hydro and thermal power plants, as well as to 
a lesser extent wind and solar. It will also be the case on the demand front with temperature 
affecting the level of demand, as less heating or more cooling will be required to adapt to 
temperature changes. 
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Step 2: Downscaling 
While GCMs provide an internally consistent set of inputs for power market models, taking 
into account climate evolution and associated variables, they typically lack the granularity re-
quired for power market studies. Indeed, not only inputs need to be geographically tailored to 
a specific power market zone, but they also need to be fed at hourly granularity into power 
market models to accurately dispatch power plants and emulate the proper functioning of the 
market. As aforementioned, compromise have to be made to store the outputs of GCM runs, 
and thus, although they are run natively with timesteps around some tens of minutes, it is not 
possible to store the outputs at the granularity required for power market modelling. Thus, a 
substantial amount of re-processing is required to downscale the output data of GCMs to the 
required spatial and time granularity of power market models. This process is both costly 
and imprecise as resampling outputs from a GCM to a more granular geographical and time 
resolution requires to make proxies and assumptions that may introduce significant errors in 
the process. The downscaling is typically done via Regional Climate Models (RCM). Re-
gional modelling is also called dynamical downscaling. However, since Regional Climate 
Models are still models, they again have biases which need to be adjusted, and the temporal 
resolution of the stored outputs may not fit the requirements either. Statistical techniques de-
signed to bias adjust and downscale global or regional climate model outputs are also avail-
able. There are however ways to calibrate the model to ensure a given level of accuracy, 
namely by calibrating it against historical data to ensure that model outputs are as close as 
possible as real observations 
 
Steps 3 and 4 
The combination of the GCM, the regional downscaling and the bias adjustment can provide 
the climate data necessary for the adequacy modelling. As discussed above, the wind and 
solar radiations need to be converted into electric generation variables and temperatures are 
converted into the demand. This is typically done through functions that output generation 
based on the technology considered and weather data inputs. For instance, in the case of 
solar power plants, irradiance is used as one of the main inputs to create solar power gener-
ation time series among other parameters that include plant efficiency, and additional tech-
nical characteristics of the plants. 
 
Finally, a power market model is run with the data series created in step 3, allowing to model 
the impact of climate change. 
Below we present two examples of the approach based on GCMs used in the recent ade-
quacy analyses: Elia and ENTSO-E.  

3.1.1 ELIA’s 2022-2032 adequacy study example 
In its latest adequacy study, the Belgian TSO ELIA implemented an approach relying on a 
future climate projection done by Météo-France. The climate database produced by Météo-
France can be classified in the synthetic climate years with constant climate category as it 
consists in multiple potential and equiprobable realisations of a specific target year.  
The methodology followed by ELIA consists in three main steps summarised below. 
 
First, Météo-France uses its climate model (ARPEGE-Climat) to generate 200 synthetic cli-
mate years with equiprobable rate of occurrences for a target year (for instance 2025) under 
an RCP scenario (either RCP4.5 or RCP8.5): 

• To do so, the climate model is first run with conditions typical of an historical year. 
Then, the outputs are calibrated against observations to mitigate the biases of the 
model and to ensure that the synthetic climate years outputted by the model and ad-
justed are statistically coherent with the historical ones 

• Then, synthetic climate years are generated for the target year (for instance 2025) 
based on future possible evolutions (RCP pathways, ocean surface temperatures re-
constructed to be representative of the target period) and bias adjusted. 
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Second, outputs from Météo-France climate model undergo two main transformations to 
generate electricity production time series: 

• Climate values are aggregated at country level for power market modelling purposes 
• Then, these aggregated values are converted into electricity production time series 

following RTE’s methodology. Essentially, RTE derived so-called “transfer functions” 
by technologies that take weather variables as input, and output electricity production 
time series. To create these functions, RTE compared historical meteorological data 
with historical load factor series and determined the transfer functions based on a 
statistical learning process. This was done per area and per technology. It is worth 
noting that the transfer functions also take into account technological improvement. 
This process is described in Figure 9. 

 

 
Figure 9 Meteorological data conversion - ELIA/RTE19 

Third, outputs of step 2 (artificially generated production series) are used in power market 
modelling. It is worth noting that the 200 series generated only focus on a specific year (in 
this example 2025), which are deemed representative for a few years around the target year. 
Indeed, computing 200 synthetic times series for each target year would be an extremely 
heavy process requiring tremendous amount of data, model calibration and computing 
power. Besides, it does not take into account all sources of climate variability. 
 

3.1.2 ENTSO-E PECD (Pan European Climate Database) 4.0 roadmap 
Over the past few years, ENTSO-E has been significantly improving the underlying data that 
feeds into their modelling to properly integrate the impact of weather on power markets. The 
data fed into the modelling of ENTSO-E comes from the PECD (Pan European Climate Da-
tabase), which is currently being reviewed to integrate climate change considerations into it. 
Figure 10 describes the current PECD roadmap presented during the expert discussion 
panel that we conducted at the end of September 2021, further detailed below. 
 

 
19 From “representation of the effects of climate on the electrical system: modelling wind and solar genera-
tion”,p2, (link) 

https://www.elia.be/-/media/project/elia/elia-site/public-consultations/2020/20201030_205_rte_modellingwindsolargeneration.pdf
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Figure 10 PECD roadmap20 

 
In particular, the upcoming PECD v4.0 approach planned to be introduced in 2022 aims at 
improving the way climate change is considered into the modelling by integrating: (i) several 
climate projections from several climate models; and (ii) several greenhouse gases emis-
sions scenarios. Climate data from the Copernicus Climate Change Service (C3S) will be 
used for the PECD V4.0. 

3.2 Alternative methodologies 

In this section, we present other approaches to integrate the effect of climate change in 
power markets, that do not follow the general approach described in section 3.1 above.  

3.2.1 Hybrid approach 
An alternative methodology to using outputs of a GCM model, downscaling them with re-
gional models, applying bias adjustments and then computing new production patterns via 
conversion algorithms consists in a hybrid approach where the outputs of the GCM model 
are used to calibrate already existing production/load datasets. This gets rid of step 2 and 3 
in Figure 8.  
 
Harang et al. (2020)21 explore this option in their article “incorporating climate change effects 
into the European power system adequacy assessment using a post-processing method”. 
Indeed, a post-processing approach can be used to account for the effects of climate change 
on existing hourly load factor or demand time series derived from historical data. The overall 
methodology is described in Figure 11. This approach consists of two main steps: 
 

• Step 1: Analysis of the weather dependency of existing power market data series  

 
20 From workshop conducted on the 21st of September 2021 
21 Harang et al., “Incorporating climate change effects into the European power system adequacy assessment 
using a post-processing method”, 2020 (https://doi.org/10.1016/J.SEGAN.2020.100403) 
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In this first step, the historical relationship between weather variables and ex-
isting production or load timeseries is analysed to create a function that de-
scribes how they change with respect to weather variables. 

• Step 2: Modification of original production/load series 
The functions obtained from step 1 are used with climate change projections 
to modify the original timeseries, and therefore embed the impact of climate 
change in these.  

 

 
Figure 11 Hybrid approach methodology overview 

 
Load data series example 
In their article, Harang et al. (2020) describe how a temperature shift is applied to existing 
load timeseries by computing the temperature sensitivity curve of the original load series.  

 
Figure 12 demand sensitivity to temperature22 

 
The power demand sensitivity to temperature was computed, and from this were derived co-
efficients used to move up or down each point of the original timeseries according to pro-
jected temperature changes due to climate change. This is illustrated by Figure 12 above. By 
shifting the temperature, a new load curve can be derived, consistent with the original curve 

 
22 Harang et al., “Incorporating climate change effects into the European power system adequacy assessment 
using a post-processing method”, 2020 (https://doi.org/10.1016/J.SEGAN.2020.100403), p7 
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which does not take climate change effects into account, which can therefore be used as a 
counterfactual.  
 
Reprofiling and scaling methods have the advantage to be easier to implement, and to build 
upon existing datasets, but require making strong assumptions. From a technical standpoint, 
these hybrid methods appear easier to implement while integrating some effects of climate 
change in power market modelling. However, because they only modify existing time series, 
they typically fail at integrating changes in occurrences of extreme events since these re-
main as in the original data series. A possible way to go around this shortcoming was stud-
ied by Parey et al. (2019), presented in the next section. 

3.2.2 Estimating the frequency of extreme events 
Against the backdrop of climate change, the frequency of severe weather events is expected 
to change.  
 
Parey et al. (2019)23 explore how occurrences of extreme events could be estimated (inte-
grating climate change) in their article “Generating a set of temperature time series repre-
sentative of recent past and near future climate”. It is argued in this article that due to the rar-
ity of extreme weather events which impact security of supply, a very large data sample is 
required to reduce sampling uncertainty. Parey et al. (2019) propose a methodology to ex-
pand outputs from GCMs (either in a single model configuration or multi-model ensembles) 
to produce a significantly larger ensemble of temporal evolutions and thus estimate more 
correctly occurrences of rare events. 
 
This much larger set of data is generated artificially by using a stochastic weather generator, 
which is then used to identify changes in the frequency of the most severe heat waves or 
cold waves. Typically, weather generators have been used for pricing derivatives in the en-
ergy sector. Weather generators typically include the impact of climate change by using 
Change Factors (CFs) derived from GCMs or RCMs, which express changes between a 
baseline climate and future projections. Change factors are applied to the statistics of the ob-
served time series to produce projected time series, which are then used to calibrate the 
weather generator. However, in their study, Sylvie Parey et al. rather combined the trends in 
temperature mean and standard deviation extracted from climate model projections with the 
stochastic generator outputs to compute future temperature timeseries. 
 
The importance of the climate model choice is highlighted in the paper, as it affects materi-
ally the outcomes of the simulation. In particular, it was found that the intensity of very se-
vere cold waves was reduced by a factor two on average across several models, with a 
large deviation of results (one model estimating a division by a factor 5 and another one pro-
jecting almost no change). Similarly, the intensity of very severe heat waves was found to 
increase by a factor 4 on average with one model going up to a factor 10. 
 
Such a technique could be used as an intermediary solution to derive probabilities of ex-
treme weather events with respect to climate change, and to weight existing production/load 
data series with extreme events in the Monte Carlo adequacy assessment so that they are 
picked more or less often. Such a methodology would however carry an inherent drawback: 
the physical structure / patterns of extremes might be different in the future from what they 
were in the past, making the method less robust than using a projection from a GCM. 

 
23 Parey et al. (2019), “Generating a set of temperature time series representative of recent past and near future 
climate”, Frontiers in environmental science 
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3.2.3 Approaches relying on statistical forecast of the climate variables 
Approaches that do not use future climate projections can be developed from the existing 
historical data by analysing how climate change has already affected this data in the past 
and by extrapolating the historical trends into the future. For example, the PECD V3.1 from 
ENTSO-E is a good methodological example of only relying on existing data series (re-ana-
lysed historical data), and not using any climate model’s future projections. Instead, trends 
are extrapolated from the existing data, which already likely encompasses near-term effects 
of climate change.  
 
PECD V3.1 
The PECD (v3.1) takes into account climate change through temperature trend correction24 
and does not rely on anything else than already available time series.  
 
Essentially, this methodology consists in computing linear trends using the available data, 
which is then applied to forecast years. Climate change affects climate variables trends in 
two main ways: (i) changes in mean; and (ii) changes in variance. A linear trend is therefore 
computed for both the mean and the variance on historical data and then extrapolated to fu-
ture periods. Once the linear trend is computed, the extrapolation can be performed on the 
original time series, by following these steps: (i) de-trend the original timeseries with respect 
to temperature; (ii) select randomly or based on a criterium individual years out of the origi-
nal timeseries; (iii) adjust the variance of the selected year based on the “target” year (e.g., 
2025) based on their estimated variance (linearly extrapolated from historical analysis); and 
(iv) add the appropriate trend based on the target year (mean trend). To avoid mapping is-
sues, each year in the 1981-2019 dataset was adjusted to 2025, which means that years fur-
ther in the past are subject to larger trend adjustments than recent years.   
 
The figure below illustrates the process of de-trending the existing data with respect to tem-
perature to obtain a temperature neutral profile, and of applying the projected temperature 
effect of a target year in the future. Two main parameters are estimated to conduct this ad-
justment: mean evolution and variance evolution. The mean gives the overall trend of the 
forecast, while the variance will give the deviation from the mean, or in other words the vola-
tility of the series. First, the original timeseries are detrended, and trends are computed for 
the mean and the variance. Once this is done, a regression is performed on the trends of the 
mean and the variance to extrapolate them into the future (see Figure 13). 

 
24 ENTSO-E use of Pan European Climate Database (PECD), from Copernicus Climate Change Service  
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Figure 13 mean and variance trends from temperature series25 

 
In a second step, the original de-trended series are adjusted to reflect the projected mean 
and variance obtained from the extrapolation in the first step. For example, considering that 
one wants to model 2030 with a 2006 weather year, one would adjust the mean and the vari-
ance of the de-trended 2006 pattern to the projected variance and mean of 2030. An exam-
ple of result from this process is shown in Figure 14. 
 

 
Figure 14 adjusted distribution based on extrapolated variance and mean26 

 

 
25 P7 from Parey et al. “Generating a set of temperature time series representative of recent past and near future 
climate”, published on 28 june 2019 (doi: https://doi.org/10.3389/fenvs.2019.00099) 
26 From workshop conducted on the 21st of September 2021 
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3.3 Classification of the ACER’s options to consider climate change 

ACER introduced three options to consider climate change in the ENTSO-E methodology for 
ERAA published on the 2nd of October 2020: 

i. rely on a best estimate of future climate projection 

ii. weight climate years to reflect their likelihood of occurrence (taking future climate 
projection into account) 

iii. rely at most on the 30 most recent historical climatic years included in the PECD 
 
We classify in the table below how the techniques identified in this chapter fit with ACER’s 
options. We understand that ACER’s options were proposed with no specific link to the ap-
proaches that have been developed later. It may thus make sense to generalise ACER’s Op-
tion 2 and consider it to be a general approach to adjust the historical data in some way to 
account for the historical climate trends. 
 
 Example Comment 
ACER  
Option 1 • General GCM approach (Il-

lustrated by ELIA’s ade-
quacy approach) 

• ENTSO-E PECD v4.0 
 

All these methodologies use future climate 
projections from GCMs and RCMs seem 
to fall into this category as they aim to use 
the best estimate of the future climate pro-
jection.   

ACER 
Option 2 • Parey et al. (2019) 

• ENTSO-E PECD v3.1 

• Hybrid approach  
 
 

ACER’s Option 2 can be considered as a 
general approach to adjust the historical 
data in some way to account for the histor-
ical climate trends. This can be e.g.  

• Via weighting the historical years 
(more recent years being weighted 
higher). Methodology by Parey et 
al.(2019) could be used to estimate 
probabilities of occurrences of severe 
weather events, and weight the 
weather years selection in Monte Carlo 
simulations for ERAA. Or   

• Via correction based on historical 
trends, such as extrapolations of mean 
and variance changes in temperature 
from existing datasets.  
Via a hybrid approach (post-processing 
approach) that can be used to account 
for the effects of climate change on ex-
isting hourly load factor or demand 
time series derived from historical data. 

ACER 
Option 3 • PECD v3.0 This methodology only relies on existing 

datasets without altering them with respect 
to climate change.  
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4. Appropriateness of ACER’s options to address climate 
change in RAA 

In this section, we compare the advantages and drawbacks of the three methodologies de-
scribed in Section 3, by assessing to what extent the options proposed by ACER can appro-
priately reflect future climate change in Resource Adequacy Assessments. To do so, an 
analysis of their strengths and weaknesses, explanatory power and associated uncertainties 
was conducted. This assessment largely relies on observations obtained from: (i) the over-
view of the existing literature to date; and (ii) inputs from experts obtained during the work-
shop conducted on the 21st of September 2021 (See the summary in the Annex).  
 
The table below describes in more detail the advantages and drawbacks of the three envi-
sioned methodologies by assessing them across three dimensions:  

(i) Accuracy: This criterion aims at measuring how well climate change is taken into 
account by the methodology.   

(ii) Complexity: This criterion aims at assessing the modelling efforts required to put 
in place that methodology; and  

(iii) Benchmarking ability: The third criterion aims at assessing whether this meth-
odology can easily be used to benchmark several scenarios of climate change 

 
The table below presents the assessment of each of ACER’s Options against these three 
criteria, considering ACER’s Option 2 in a generalised way as the approach to adjust the his-
torical data in some way to account for the historical climate trends.   
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 ACER Option 1 
Rely on a best forecast of future climate projection 

ACER Option 2 
Adjust the historical data in some way to account 

for the historical climate trends. 

ACER Option 3 
Rely at most on the 30 most recent historical cli-

matic years included in the PECD 
Accuracy • Climate variables used as inputs for power mar-

kets (temperature, wind speed, precipitation and 
solar radiation) are fully internally consistent 
thanks to GCMs, which model the physics of cli-
mate change.  

• Allows to capture the impact of climate change 
across all relevant dimensions: (i) mean changes; 
(ii) variance changes; and (iii) occurrences of ex-
treme weather events. 

• Results for the first few years of the projection 
might not be as accurate as recently observed his-
torical data due to modelling errors/inaccuracies 
(i.e., necessary downscaling of outputs of GCMs 
might introduce additional biases and modelling 
errors/inaccuracies.) However, robust calibration 
against historical data should ensure a good level 
and transparent level of accuracy. 

• Allows to capture the impact of climate change 
across one dimension only (e.g., occurrences of 
extreme events only or applying the trends to re-
flect mean and variance changes due to tempera-
ture) without ensuring consistency between all cli-
mate variables 

• Good accuracy for the next decade as the 
weather is not expected to change drastically in 
the next ten years, but rather over longer hori-
zons.  

• Applying the historical climate trends or weighting 
historical climate years assumes that past trends 
will be representative of the future with respect to 
temperature, which might not be the case and will 
not address the changes in mean and variance of 
existing time series. 

• Could still be quite accurate for short-term fore-
cast as weather is not expected to change drasti-
cally over the coming years. However, the histori-
cal data already captures the climate changes 
over the past 30 years and using such data with-
out correction may bias the projection.  

• Does not allow to capture the impact of climate 
change on mean, variance and frequency of ex-
treme events changes.  

• Limiting the dataset to the last 30 years may not 
be enough to capture rare climate events. Fre-
quency of events might not be accurately mod-
elled. However, taking too many historical years 
could lead to underestimating the impact of cli-
mate change in this approach.  

Complexity • Complex modelling required due to the need of 
one or several GCMs and subsequently RCMs. 
Modelling effort is high, both in terms of computing 
power necessary to run the different models 
(GCMs, RCMs) but also in terms of input data re-
quired and data processing. 

• Possibility to reduce complexity by applying post-
processing methods but reducing accuracy as 
changes in extreme events frequency would not 
be reflected 

• Statistical adjustment for the historical trends is a 
relatively simple option relying on existing da-
tasets, extrapolating the historical trends into the 
future. 

• Assessing the weights of the climate years to re-
flect their future likelihood is more complex requir-
ing large sample of weather years through to cap-
ture accurately occurrences of severe events. 

 

• Simplest option out of the three as it relies on ex-
isting datasets and does not involve additional 
complex climate modelling or any additional data 
processing. 

 

Benchmark-
ing ability 

• Ability to run several scenarios of climate change, 
allowing for easy comparison between scenarios 
and to create benchmarks. 

 

• Running several climate change scenarios would 
be more difficult and less consistent than in option 
1 as different weights/adjustments of the historical 
series will have to be done to run different climate 
change scenarios 

• This option does not provide the possibility to take 
into account alternative scenarios of climate 
change  
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Overall and albeit more complex, the first option which consists in relying on a best estimate 
of future climate projection appears to be the most promising one out of the three, as it al-
lows to assess the climate change effects on all climate variables used as inputs into power 
market modelling (temperatures, wind speeds, precipitation and solar radiation), and to run 
different climate change scenarios, ensuring full consistency between input timeseries used 
in power market modelling. Indeed, this methodology allows to capture: (i) mean changes of 
weather parameters; (ii) variance changes of other relevant weather parameters (precipita-
tion, wind and solar radiation); and (iii) changes in frequency of extreme weather events. 
However, both the variable consistency and the future changes are dependent on the cho-
sen climate model. Identifying the best estimate for the projection is not an easy task since a 
large number of climate models exists with different strengths and weaknesses. Variants of 
this option that aim at reducing its complexity by bypassing GCMs and RCMs could be used 
in our view as temporary solutions as they do not provide a fully internally consistent dataset 
with respect to climate variables.  
 
We consider the second option in its generalised formulation, consisting in an adjustment of 
the historical data to account for the historical climate trends. For example, detrending meth-
odologies which consist in extrapolating trends of impact of temperature from historical data 
allow to capture the main impact of climate change on the power sector of the mean and the 
variance of the temperature. This approach can be quite accurate over the timeframe of the 
RAA of ten years over which the climate change effect is not expected to be very significant, 
assuming that (i) there are no trends break compared to historical trends; and (ii) frequency 
of extreme events is representative in the historical climate years available. This option may 
also lack consistency between all climate variables obtained through extrapolation.  
 
The third option which consists in relying on the 30 most recent historical climatic years in-
cluded in the PECD without any refinement or trend correction can also be relevant for short-
term projections. It is the simplest option out of the three since it does not require any addi-
tional modelling and existing datasets can be used as they are. However, using such an ap-
proach would rely on the hypothesis that the weather is not expected to change much over 
the coming years compared to the average of the last 30 years and that the existing dataset 
is therefore representative of the forecast years. However, the last 30 years contain the cli-
mate trend and using these data directly with no adjustment for this trend would most likely 
result in underestimating the effect of the climate change over the next ten years. On the 
other hand, limiting the historical dataset to the last 30 years may not be enough to capture 
rare climate events. However, taking too many historical years could lead to underestimating 
the effect of climate change by using this approach. 
 
Therefore, we conclude that ACER’s Option 1, in its full form (i.e. relying on Global Climate 
Models (GCM), Regional Climate Models (RCM) and bias adjustment, without applying 
shortcuts) is the most accurate and preferable option for including climate change in RAA, 
albeit involving quite complex modelling. The use of climate data generated by climate mod-
els ensures consistency between climate variables obtained from the model. Furthermore, 
the complexity of Option 1 can be justified by the ability of this approach to benchmark alter-
native scenarios of climate change.  
 
ACER’s Option 2 considered in the generalised form as adjustment of the historical data to 
account for the historical climate trends, could still be a reasonably accurate option to ad-
dress the climate change over the time horizon of ten years with little additional modelling 
efforts.  
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Appendix 
Meeting minutes: Workshop WP4, 21 September 2021 

 
Date and time: 21.09.2021 
Place: Online 
  
Participants (Institu-
tion): 

Research team: Fabien Roques, Dmitri Perekhodtsev, Anton 
Burger (Compass Lexecon), Christian Nabe, Karoline Steinbacher, 
Konstantin Staschus (Guidehouse), Robert Diels, Martin Lienert, 
Marcel Brodhof (r2b) 
External experts: Dr Blanka Bartók (BBU), Dr Laurent Dubus 
(RTE/ENTSO-E), Laurens Stoop (Univ Utrecht), Dr Matti Juhani 
Koivisto (DTU), Dr David Brayshaw (University of Reading), Dr Ha-
gen Koch (Potsdam Institute for Climate Impact Research), Dr. Jan 
Wohland (ETH Zurich), Dr Alberto Troccoli (World Energy & Mete-
orology Council), Dr Luke Lavin (NREL) and Dr Laura Manz 
(Guidehouse) 
Pentalateral Forum steering lead: Benedikt Günter, Simeon Hag-
spiel, Jan Hensmans, Eppie Pelgrum. 
Pentalateral Forum members 

 
The key takeaways of the discussion session are listed below: 

• Concerns were raised about the data quality outputted by GCMs when compared to 
historical data. Jan Wohland (ETH Zurich) mentioned that within 10 years you might 
be better off to just using historical data, and that climate change signal will be rela-
tively small. David Brayshaw (Univ. of Reading) also suggested that the trend over 5 
to 10 years due to the amount of greenhouse gas increases is relatively modest.  

• Caution was raised about relying entirely on historic data, as using 30 years of recent 
history to look five to ten years into the future may introduce biases. Indeed, the ear-
lier part of the record consist of data from 30 years ago which ultimately consist in a 
transient record over these 30 years.  

• Matti Kovisto (DTU) mentioned that one option could be to use 20 of historical years 
in combination with scaling of the historical data with temperature, maybe even with 
mean wind speeds. However, it would be hard to model the correct representation of 
extreme events. 

• Alberto Troccoli (WEMCO) argued that the longest possible record of historical data 
should be used: “even if you go back to the 60s and you know you got this very cold 
periods because those are part of the statistics of the climate we know and although 
they are unlikely to recur.” 

• Thermal generation is one of the challenging aspects of considering climate change 
in RAA. Indeed, accounting for correlation of temperature effect on outage rates of 
thermal plants is tricky. European rivers which host a number of thermal power 
plants. One needs to be very careful and account for these correlations in the Monte 
Carlo simulations. 
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